Red Rose Sr. Sec. School
 Work Sheet 1
 Mathematics(Ch: 1,2,3 and 4 Class: 12

Roll No.:
Time -
Date :

1. Let R be a relation in the set of natural numbers N defined by $R=\{(a, b) \in N \times N: a<b\}$. Is relation R reflexive? Give a reason.
2. State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive. 1
3. Given set $A=\{a, b\}$ and relation R on A is defined as $R=\{(a, a),(b, b)\}$. Is relation an identity 1 relation.
4. If $f: R \rightarrow R$ be defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then find fof (x).
5. Let $f: R \rightarrow R$ is defined by $f(x)=|x|$. Is function f onto? Give a reason.
6. The binary operation *: $R \times R \rightarrow R$ is defined as $a * b=2 a+b$. Find (2*3)*4.
7. * is a binary operation defined on Q, given by $a * b=a+a b, a, b \in Q$. Is * commutative?
8. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, write the range of R.
9. A reflexive relation is identity relation also. State true or false.
10. If $f(x)=27 x^{3}$ and $g(x)=x^{1 / 3}$, find $g \circ f(x)$.
11. Prove that $f: R \rightarrow R$ given by $f(x)=x^{3}+1$ is one-one function.
12. Let $f: R-\left\{\frac{4}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$, find $f^{-1}:$ Range of $f \rightarrow R-1$ $\left\{-\frac{4}{3}\right\}$.
13.If the binary operation * on the set of integers Z is defined by $a * b=a+3 b^{2}$, then find the value of 1 2 * 4 .
13. * is a binary operation defined on the set of natural numbers N, defined by $a * b=a^{b}$. Find (i) 2 * 31 (ii) $3 * 2$.
14. Show that division is not a binary operation on N.
15. Find the principal value of $\cot ^{-1}(-\sqrt{3})$.
16. What is the domain of the function $\sin ^{-1} x$?
17. Write the principal values of $\sec ^{-1}(-2)$.
18.

Write the principal values of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$.
20. Find the principal value of $\operatorname{cosec}^{-1}(2)$.
21. Write the principal value of $\operatorname{cosec}^{-1}(2)$.
22.

Write the principal value of $\tan ^{-1}(-\sqrt{3})$
23. What is the domain of the function $\operatorname{cosec}^{-1} x$?
24. If a matrix has 5 elements, write all possible orders it can have.
25. A matrix has 18 elements, write the possible orders of the matrix.
26. If $A^{T}=\left[\begin{array}{rr}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrr}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$, then find $A^{T}-B^{T}$.
27. If $\left[\begin{array}{rr}y+2 x & 5 \\ -x & 3\end{array}\right]=\left[\begin{array}{rr}7 & 5 \\ -2 & 3\end{array}\right]$, find the value of y.
28. What are the possible orders of a matrix having 24, elements.
29. Given zero matrices $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Are these matrices equal? Give reasons.
30. Form a 2×1 matrix $A=\left[a_{i j}\right]$ where $a_{i j}=i+2 j^{2}$.
31. If $X_{m \times 3} Y_{p \times 4}=Z_{2 \times b}$, for three matrices X, Y and Z, find the values of m, p and b.
32.

Is matrix $A=\left[\begin{array}{rrr}0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$ symmetric or skew symmetric? Give a reason.
33.
Matrix $A=\left[\begin{array}{ccc}0 & 2 b & -2 \\ 3 & 1 & 3 \\ 3 a & 3 & -1\end{array}\right]$ is given to be symmetric, find values of a and b.
34.
The matrix $\left[\begin{array}{lll}0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0\end{array}\right]$ is a scalar matrix. State true or false. If false then what type of matrix is this?
35. Use elementary column operations $C_{2} \rightarrow C_{2}-2 C_{1}$ in the matrix equation 1 $\left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$.
36. Write the element a_{12} of the matrix $A=\left[a_{i j}\right]_{2 \times 2}$, whose elements $a_{i j}$ are given by $a_{i j}=e^{2 i x} \sin j x . \quad 1$
37. If matrix $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, write matrix $A A^{\prime}$ where A^{\prime} is trnaspose of matrix A.
38. If $A=\left[a_{i j}\right]=\left[\begin{array}{rrr}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]$ and $B=\left[b_{i j}\right]=\left[\begin{array}{rrr}2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2\end{array}\right]$, then find $3 a_{12}-5 b_{21}$.

$$
\text { 39. If }\left[\begin{array}{c}
2 x-1 \\
5
\end{array}\right]=\left[\begin{array}{c}
3 \\
x+y
\end{array}\right] \text {, find } x \text { and } y \text {. }
$$

40.

For what value of k, the matrix $\left[\begin{array}{rrr}0 & -1 & k \\ 1 & 0 & 5 \\ 4 & -5 & 0\end{array}\right]$ is skew symmetric?
41. Evaluate $\left|\begin{array}{cc}a+i b & c+i d \\ c-i d & a-i b\end{array}\right|$.
42. If $\left|\begin{array}{ll}2 x+5 & 3 \\ 5 x+2 & 9\end{array}\right|=0$, find x.
43. If $A=\left|\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right|$, find $|A|$.
44. What is the value of the following determinant?
$\Delta=\left|\begin{array}{lll}4 & a & b+c \\ 4 & b & c+a \\ 4 & c & a+b\end{array}\right|$
45. If $A=\left[\begin{array}{rrr}5 & 6 & -3 \\ -4 & 3 & 2 \\ -4 & -7 & 3\end{array}\right]$, then write the cofactor of the element a_{21}.
46. For what value of k, the matrix $\left|\begin{array}{ll}k & 2 \\ 3 & 4\end{array}\right|$ has no inverse?
47. Given a square matrix A of order 3×3, such that $|A|=12$, find the value of $|A \cdot \operatorname{adj} A|$.
48.

Evaluate the derterminant $\left|\begin{array}{ll}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$.
49. Find the minor of the element of second row and third column $\left(a_{23}\right)$ in the following 1 determinant: $\left|\begin{array}{rrr}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & 7\end{array}\right|$
50. In the given determinant $\left|\begin{array}{rr}3 & -1 \\ 4 & 6\end{array}\right|$, find (i) M_{22} (ii) A_{21}.
51. For what value of x, the matrix $\left[\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right]$ is singular?
52. If $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, write adj A.
53. If the value of third order determinant is 12 , then find the value of the determinant formed by its 1 cofactors.
54. Find value of x, if $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$.
55. Evaluate $\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 & \cos x & \sin x \\ 3 & -\sin x & \cos x\end{array}\right|$.
56. Evaluate $\left|\begin{array}{cc}\sec 35^{\circ} & \tan 35^{\circ} \\ \cot 55^{\circ} & \operatorname{cosec} 55^{\circ}\end{array}\right|$.
57. For what value of k, the matric $\left[\begin{array}{ll}k & 2 \\ 3 & 4\end{array}\right]$ is invertible?
58.

Write the value of the determinant $\left|\begin{array}{ccc}2 & 3 & 4 \\ 5 & 6 & 8 \\ 23 & 33 & 44\end{array}\right|$.
59. Write $\left|A^{-1}\right|$ for the matrix $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$.
60. If A is a non singular matrix of order 3 and $|A|=-4$, find $|\operatorname{adj} A|$

