

- 2. State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive. 1
- 3. Given set $A = \{a, b\}$ and relation R on A is defined as $R = \{(a, a), (b, b)\}$. Is relation an identity 1 relation.
- 4. If $f: R \to R$ be defined by $f(x) = (3 x^3)^{1/3}$, then find fof (x). 1
- 5. Let $f : R \to R$ is defined by f(x) = |x|. Is function f onto? Give a reason.
- 6. The binary operation $*: R \times R \rightarrow R$ is defined as a * b = 2a + b. Find (2 * 3) * 4.
- 7. * is a binary operation defined on Q, given by a * b = a + ab, $a, b \in Q$. Is * commutative?
- 8. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R.
- 9. A reflexive relation is identity relation also. State true or false.

10. If
$$f(x) = 27x^3$$
 and $g(x) = x^{1/3}$, find $gof(x)$.

11. Prove that $f: R \rightarrow R$ given by $f(x) = x^3 + 1$ is one-one function.

^{12.} Let
$$f: R - \left\{\frac{4}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$$
 be a function defined as $f(x) = \frac{4x}{3x+4}$, find f^{-1} : Range of $f \to R - 1$
 $\left\{-\frac{4}{3}\right\}$.

13. If the binary operation * on the set of integers Z is defined by $a * b = a + 3b^2$, then find the value of 1 2 * 4.

- 14. * is a binary operation defined on the set of natural numbers *N*, defined by $a * b = a^b$. Find (i) 2 * 3 1 (ii) 3 * 2.
- 15. Show that division is not a binary operation on *N*.
- ^{16.} Find the principal value of $\cot^{-1}(-\sqrt{3})$.
- 17. What is the domain of the function $\sin^{-1} x$?

S

- 18. Write the principal values of $\sec^{-1}(-2)$.
- 19.

$$ec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 1

1

1

1

1

1

1

1

1

1

1

Write the principal values of

20. Find the principal value of $cosec^{-1}(2)$.	1
21. Write the principal value of cosec ⁻¹ (2).	1
22. $\frac{\tan^{-1}(-\sqrt{3})}{\text{Write the principal value of }}$	1
23. What is the domain of the function $\csc^{-1}x$?	1
24. If a matrix has 5 elements, write all possible orders it can have.	1
25. A matrix has 18 elements, write the possible orders of the matrix.	1
26. If $A^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^T - B^T$.	1
^{27.} If $\begin{bmatrix} y+2x & 5\\ -x & 3 \end{bmatrix} = \begin{bmatrix} 7 & 5\\ -2 & 3 \end{bmatrix}$, find the value of y.	1
28. What are the possible orders of a matrix having 24, elements.	1
^{29.} Given zero matrices $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Are these matrices equal? Give reasons.	1
30. Form a 2 × 1 matrix A = $[a_{ij}]$ where $a_{ij} = i + 2j^2$.	1
31. If $X_{m \times 3} Y_{p \times 4} = Z_{2 \times b}$, for three matrices X, Y and Z, find the values of m, p and b.	1
32. Is matrix $A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$ symmetric or skew symmetric? Give a reason.	1
33. Matrix A = $\begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$ is given to be symmetric, find values of a and b.	1
34. The matrix $\begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix}$ is a scalar matrix. State true or false. If false then what type of matrix is this?	1
35. Use elementary column operations $C_2 \rightarrow C_2 - 2C_1$ in the matrix equation $\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$.	1
36. Write the element a_{12} of the matrix A = $[a_{ij}]_{2 \times 2}$, whose elements a_{ij} are given by $a_{ij} = e^{2ix} \sin jx$.	1
37. If matrix $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, write matrix AA' where A' is trnaspose of matrix A .	1
38. If $A = [a_{ij}] = \begin{bmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{bmatrix}$ and $B = [b_{ij}] = \begin{bmatrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{bmatrix}$, then find $3a_{12} - 5b_{21}$.	1

^{39.} If $\begin{bmatrix} 2x-1\\5 \end{bmatrix} = \begin{bmatrix} 3\\x+y \end{bmatrix}$, find x and y.	1
40. For what value of k, the matrix $\begin{bmatrix} 0 & -1 & k \\ 1 & 0 & 5 \\ 4 & -5 & 0 \end{bmatrix}$ is skew symmetric?	1
^{41.} Evaluate $\begin{vmatrix} a+ib & c+id \\ c-id & a-ib \end{vmatrix}$.	1
^{42.} If $\begin{vmatrix} 2x+5 & 3\\ 5x+2 & 9 \end{vmatrix} = 0$, find x.	1
43. If $A = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{vmatrix}$, find A .	1
44. What is the value of the following determinant? $\Delta = \begin{vmatrix} 4 & a & b + c \\ 4 & b & c + a \\ 4 & c & a + b \end{vmatrix}$	1
45. If $A = \begin{bmatrix} 5 & 6 & -3 \\ -4 & 3 & 2 \\ -4 & -7 & 3 \end{bmatrix}$, then write the cofactor of the element a_{21} .	1
^{46.} For what value of k, the matrix $\begin{vmatrix} k & 2 \\ 3 & 4 \end{vmatrix}$ has no inverse?	1
47. Given a square matrix A of order 3×3 , such that $ A = 12$, find the value of $ A $.	1
48. Evaluate the derterminant $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$	1
49. Find the minor of the element of second row and third column (a_{23}) in the following determinant: $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & 7 \end{vmatrix}$	1
^{50.} In the given determinant $\begin{vmatrix} 3 & -1 \\ 4 & 6 \end{vmatrix}$, find (<i>i</i>) M_{22} (<i>ii</i>) A_{21} .	1
51. For what value of x, the matrix $\begin{bmatrix} 5-x & x+1\\ 2 & 4 \end{bmatrix}$ is singular?	1
FO [0 ; 0]	1

^{52.} If
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
, write adj A .

53. If the value of third order determinant is 12, then find the value of the determinant formed by its 1 cofactors.

54. Find value of x, if
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$
155. Evaluate $\begin{vmatrix} 1 & 0 & 0 \\ 2 & \cos x & \sin x \\ 3 & -\sin x & \cos x \end{vmatrix}$ 156. Evaluate $\begin{vmatrix} \sec 35^{\circ} & \tan 35^{\circ} \\ \cot 55^{\circ} & \csc 55^{\circ} \end{vmatrix}$ 157. For what value of k, the matric $\begin{bmatrix} k & 2 \\ 3 & 4 \end{bmatrix}$ is invertible?158. Write the value of the determinant $\begin{vmatrix} 2 & 3 & 4 \\ 5 & 6 & 8 \\ 23 & 33 & 44 \end{vmatrix}$ 159. Write $|A^{-1}|$ for the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ 1

1

60. If A is a non singular matrix of order 3 and |A| = -4, find |adj A|